Savannah District # Sustainable Design and Development Cost Template Cost Engineering Section Savannah District ### Sustainable Design and Development Cost Template Savannah District - HQ,USACE asked Savannah District to perform a cost study using four Showcase projects to determine the additional design and construction costs/savings in achieving a Gold SPiRiT rating using Silver as a baseline. As part of the study, Savannah District was asked to develop a template for compiling these costs/savings. - The four projects selected for this study were: Barracks Complex, FY-03, LI-48707, Fort Benning, GA 16th MP Barracks Complex, FY-03, LI-41631, Fort Bragg, NC Communications Facility, FY-02, LI-30629, Fort Gordon, GA Range Road Barracks Complex, FY-03, LI-48674, Fort Campbell, KY Since the Communications Facility was the only awarded project and the three remaining projects would not be awarded until after May 1st, it was decided that the template would be developed first using the data from the Communications Facility. | | Facility Points Sum | mary | | | Sustaina | able C | osts/S | Saving | | | | |-------|---------------------------------------|--------------|--------|--------------|------------|--------|--------|---------|--------------|--------------|---------------------| | | | | | | | Design | ln | crement | tal Constr | uction (+/-) | | | 1.0 | Sustainable Sites (S) | Score | Max 20 | Silver
12 | Gold
18 | 41,000 | U/M | QTY | Unit
Cost | 157,500 | Remarks | | 1.R1 | Erosion, Sedimentation & Water Qualit | y Control | | [Required] | | 3,000 | | | | 5,000 | | | 1.C1 | Site Selection | | | | | | | | | | | | | Avoid undesirable sites | | 1 | 1 | 1 | 0 | | | | 0 | Site meets criteria | | | Site adjacencies/compatibility | | 1 | 1 | 1 | 0 | | | | 0 | Site meets criteria | | 1.C2 | Installation/Base Redevelopment | | | | | | | | | | | | | Increase density | | 1 | 1 | 1 | 0 | | | | 0 | Site meets criteria | | | Minimize new infrastructure | | 1 | 1 | 1 | 0 | | | | 0 | Site meets criteria | | 1.C3 | Brownfield Redevelopment | | 1 | | 0 | | | | | | | | 1.C4 | Alternative Transportation | | | | | | | | | | | | | Proximity to transit system | | 1 | | 0 | | | | | | | | | Bike racks and show ers | | 1 | | 1 | 5,000 | | | | 10,000 | | | | Proximity to alternative fuel station | | 1 | 1 | 1 | 0 | | | | 0 | Site meets criteria | | | Parking capacity/carpool parking | | 1 | 1 | 1 | 2,000 | | | | | | | 1.C5 | Reduced Site Disturbance | | | | | | | | | | | | | Limited site disturbance/restoration | | 1 | | 1 | 5,000 | | | | 25,000 | | | | Reduced footprint | | 1 | 1 | 1 | 0 | | | | 0 | | | 1.C6 | Stormw ater Management | | | | | | | | | | | | | Stormw ater runoff rate | | 1 | | 1 | 5,000 | | | | 50,000 | | | | Stormw ater treatment | | 1 | | 1 | 5,000 | | | | 50,000 | | | 1.C7 | Landscape & Ext. Design to Reduce F | leat Islands | | | | | | | | | | | | Reduce site heat islands | | 1 | | 1 | 2,500 | | | | 15,000 | | | | Reduce roof heat islands | | 1 | 1 | 1 | 2,500 | | | | 0 | | | 1.C8 | Light Pollution Reduction | | 1 | | 1 | 2,000 | | | | 2,500 | | | 1.C9 | Optimize Sites Features | | 1 | 1 | 1 | 5,000 | | | | 0 | | | I.C10 | Facility Impact | | | | | | | | | | | | | Cluster facilities | | 1 | 1 | 1 | 0 | | | | 0 | | | | Mitigate offsite impacts | | 1 | 1 | 1 | 2,000 | | | | 0 | | | 1.C11 | Site Ecology | | 1 | 1 | 1 | 2,000 | | | | 0 | | | 2.0 | Water Efficiency | | -9 | core | Max 5 | Silver | Gal | d 0 | d 0 0 | ld 0 0 U/M | d 0 U/M | d 0 0 U/M QTY | d 0 0 U/M QTY 0 | |------|---------------------------|-----------------|-----------|------|------------|--------|--------|-----|--------|------------|------------|----------------|-----------------------| | 2.0 | Water Emolency | | | 0010 | max o | Cilver | Gold 0 | ١ | | 9/11/1 | o em | 0 0/M Q11 | 0 C/III Q11 0 | | 2.C1 | Water Efficient Landsca | aping | | | | | | ł | | | | | | | | High efficiency irriga | | te w ater | | 1 | | 0 | 1 | | | | | | | | No irrigation | | | | 1 | | 0 | İ | | | | | | | 2.C2 | Innovative Wastew ater | Technologies | | | 1 | | 0 | | | | | | | | 2.C3 | Water Use Reduction | | | | | | | ĺ | | | | | | | | 20% Water use redu | ction | | | 1 | | 0 | I | | | | | | | | 30% Water use redu | ction | | | 1 | | 0 | l | | | | | | | | | | | | | | | J | | | | | | | 3.0 | Energy & Atmosphere | | s | core | Max 28 | Silver | Gold | | 19,000 | 19,000 U/M | 19.000 U/M | 19,000 U/M QTY | 19,000 U/M QTY 52,000 | | | | | | 00.0 | max 20 | 0 | 16 | | | 10,000 | 1 | | 211 02,000 | | 3.R1 | Fundamental Building S | /stems Commi | ssionina | | [Required] | R | R | ì | 3.000 | 3 000 | 3 000 | 3 000 | 3.000 20.000 | | 3.R2 | Minimum Energy Perfori | | 00.09 | | [Required] | R | R | | 5.000 | -, | -7 | -, | -, | | 3.R3 | CFC Reduction in HVAC | | | | [Required] | R | R | | 1,000 | -, | -7 | ., | -, | | 3.C1 | Optimize Energy Perfor | | | | 20 | | 16 | | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 20,000 | | 3.C2 | Renew able Energy | | | | 4 | | 0 | | | | | | | | | 5% Onsite renew ab | e energy - 1 p | oint | | | | | | | | | | | | | 10% onsite renew at | le energy - 2 | points | | | | | | | | | | | | | 15% onsite renew at | le energy - 3 p | points | | | | | | | | | | | | | 20% onsite renew at | le energy - 4 p | points | | | | | | | | | | | | 3.C3 | Additional Commissioni | ng | | | 1 | | 0 | | | | | | | | 3.C4 | < <deleted>></deleted> | | | | | | | | | | | | | | 3.C5 | Measurement and Verif | ication | | | 1 | • | 0 | | | | | | | | 3.C6 | Green Power | | | | 1 | | 0 | | | | | | | | 3.C7 | Distributed Generation | | | | 1 | | 0 | | | | | | | | 4.0 | Materials and Resources (M) | Score N | Max 13 | Silver 4 | Gold 6 | | 4,000 | 4,000 U/M | 4,000 U/M | 4,000 U/M QTY | 4,000 U/M QTY 8,000 | |------|---------------------------------------|---------|----------|----------|--------|---|-------|-----------|-----------|---------------|---------------------| | 4.R1 | Storage and Collection of Recyclables | [B | Required | R | R | | 500 | 500 | 500 | 500 | 500 3,000 | | 4.C1 | Building Reuse | | 3 | | 0 | H | | | | | 0,000 | | 4.C2 | Construction Waste Management | | - | | | | | | | | | | | Reduce construction waste | | 1 | | 1 | | 500 | 500 | 500 | 500 | 500 3,000 | | | Reduce additional construction waste | | 1 | | 0 | | | | | | | | 4.C3 | Resource Reuse | | | | | | | | | | | | | Salvage/reused materials | | 1 | 1 | 1 | | 500 | 500 | 500 | 500 | 500 0 | | | Salvage/reused additional materials | | 1 | 1 | 1 | | 500 | 500 | 500 | 500 | 500 0 | | 4.C4 | Recycled Content | | | | | | | | | | | | | Materials recycled content | | 1 | 1 | 1 | | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 0 | | | Additional materials recycled content | | 1 | | 0 | | | | | | | | 4.C5 | Local/Regional Materials | | | | | | | | | | | | | Regionally manufactured materials | | 1 | 1 | 1 | | 500 | 500 | 500 | 500 | 500 0 | | | Regionally extracted materials | | 1 | | 0 | | | | | | | | 4.C6 | Rapidly Renew able Materials | | 1 | | 0 | | | | | | | | 4.C7 | Certified Wood | | 1 | | 1 | | 500 | 500 | 500 | 500 | 500 2,000 | | 5.0 | Indoor Environmental Quality (IEQ) (Q) Scor | e Max 17 | Silver 7 | Gold
12 | 21,000 | U/M | QTY | 46,500 | Remarks | |-------|--|-----------|----------|------------|--------|-----|-----|---------------------------------------|---------| | 5.R1 | Minimum IAQ Performance | [Required | d R | R | 2,000 | | | 0 | | | 5.R2 | Environmental Tobacco Smoke (ETS) Control | [Required | • | R | 2,000 | | | 0 | | | 5.C1 | IAQ Monitoring | 1 | | 1 | 2,000 | | | 5,000 | | | 5.C2 | Increase Ventilation Effectiveness | 1 | | 0 | | | | · · · · · · · · · · · · · · · · · · · | | | 5.C3 | Construction IAQ Management Plan | | | | | | | | | | | SMACNA/absorptive materials/filtration | 1 | 1 | 1 | 1,000 | | | 0 | | | | Flushout/baseline IAQ test | 1 | | 1 | 500 | | | 2,500 | | | 5.C4 | Low - Emitting Materials | | | | | | | | | | | Adhesive/sealant VOC | 1 | 1 | 1 | 500 | | | 1,000 | | | | Green Seal paints and coatings | 1 | 1 | 1 | 500 | | | 1,000 | | | | CRI Green label carpet | 1 | 1 | 1 | 500 | | | 1,000 | | | | No urea/formaldehyde resins | 1 | 1 | 1 | 500 | | | 1,000 | | | 5.C5 | Indoor Chemical and Pollutant Source Control | 1 | 1 | 1 | 500 | | | 0 | | | 5.C6 | Controllability of Systems | | | | | | | | | | | Operable w indow s/perimeter light controls | 1 | | 1 | 6,000 | | | 20,000 | | | | Non-perimeter controls | 1 | | 0 | | | | | | | 5.C7 | Thermal Comfort | | | | | | | | | | | ASHRAE thermal comfort standards | 1 | 1 | 1 | 1,000 | | | 0 | | | | Temperature/humidity monitoring | 1 | | 0 | | | | | | | 5.C8 | Daylight and Views | | | | | | | | | | | 75% daylighting | 1 | | 1 | 3,000 | | | 10,000 | | | | 90% outdoor view | 1 | | 0 | | | | | | | 5.C9 | Acoustic Environmental/Noise Control | 1 | | 1 | 1,000 | | | 5,000 | | | 5.C10 | Facility In-use IAQ Management Plan | 1 | | 0 | | | | | | | _ | | | | | | | | | | | |---------------|---|--------------------|---------|----------|----------|---|---------|--------------|------------------|---------------------------------------| | 0 | Facility Delivery Process (P |) Score | Max 7 | Silver 7 | Gold 7 | 7 | 15,000 | 7 15,000 U/M | 7 15,000 U/M QTY | 7 15,000 U/M QTY 20,000 | | 4 | Heliatia Delivery of Facility | | | | | | | | | | | 5.C1 | Holistic Delivery of Facility Team leader experience | | 1 | 1 | 1 | ł | 0 | | | | | | Train team | | 1 | 1 | 1 | 1 | 0 | | | | | | Identify project goals | | 1 | 1 | 1 | 1 | 0 | , , | | · · · · · · · · · · · · · · · · · · · | | \rightarrow | Charettes | | 1 | 1 | 1 | | 5,000 | | - | | | -+ | Resolve tradeoffs | | 2 | 1 | 2 | ł | 5,000 | | | | | | Document results | | 1 | 1 | 1 | ł | 5,000 | | | , | | \rightarrow | Document results | | 1 | ' | <u>'</u> | 1 | 5,000 | 5,000 | 3,000 | 3,000 | | 7.0 | Current Mission | Score | Max 6 | Silver 4 | Gold 6 | ĺ | 3,000 | 3,000 U/M | 3,000 U/M QT | 3,000 U/M QTY 1,000 | | 7.C1 | Operation and Maintenance | | | | | ŀ | | | | | | 7.01 | Develop O&M plan | | 2 | | 2 | | 0 | | | 0 1,000 | | \rightarrow | Durable materials | | 1 | 1 | 1 | l | 1,000 | - | - | .,, | | 7.C2 | Soldier and Workforce Producti | vity and Potentian | | - | ' | l | 1,000 | 1,000 | 1,000 | 1,000 | | .02 | Quality indoor environment | rity and Retention | 1 | 1 | 1 | 4 | 1,000 | 1,000 | 1,000 | 1,000 | | | Functional work environment | | 1 | 1 | 1 | | 500 | | | | | - | Healthy w ork environment | | 1 | 1 | 1 | İ | 500 | | | | | - | Thealthy work environment | | ' | ' | <u>'</u> | ı | 300 | 300 | 300 | 300 | | 8.0 | Current Mission | Score | Max 4 | Silver 4 | Gold 4 | ĺ | 1,000 | 1,000 U/M | 1,000 U/M QT | 1,000 U/M QTY 0 | | | | | | | | ĺ | | | | | | 8.C1 | Functional Life of Facility and S | upporting Systems | | | | | | | | | | | Determine functional life | | 1 | 1 | 1 | | 500 | | | | | | Determine building life | | 1 | 1 | 1 | | 500 | 500 | 500 | 500 0 | | .C2 | Adaptation, Renew al and Futur | e Uses | | | | | | | | | | | Design for future uses | | 1 | 1 | 1 | | 0 | · | | | | | Minimize building size | | 1 | 1 | 1 | | 0 | 0 | 0 | 0 0 | | | | | | | | | | | | | | | T / 10 | | May 400 | 00 | - 00 | | 101.000 | 104 000 | 404,000 | 404 000 | | | Total So | ore | Max 100 | 38 | 69 | | 104,000 | 104,000 | 104,000 | 104,000 285,000 | / | Sub Entries de Support Facility SDD Costs Electric Svc Water Sew er Gas Steam/Chilled Water Distribution Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo | U/M
U/M
U/M | QTY
QTY | Unit Cost
Unit Cost
Unit Cost | Cost Cost Cost Cost Cost Cost Cost Cost | | |---|--|---------------------------------|--|---|--------------------------| | Electric Svc Water Sew er Gas Steam/Chilled Water Distribution Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M
U/M
U/M
U/M
U/M | QTY
QTY
QTY
QTY
QTY | Unit Cost
Unit Cost
Unit Cost
Unit Cost | Cost
Cost
Cost
Cost | | | Electric Svc Water Sew er Gas Steam/Chilled Water Distribution Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M
U/M
U/M
U/M
U/M | QTY
QTY
QTY
QTY
QTY | Unit Cost
Unit Cost
Unit Cost
Unit Cost | Cost
Cost
Cost
Cost | | | Water Sew er Gas Steam/Chilled Water Distribution Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M
U/M
U/M
U/M | QTY
QTY
QTY
QTY
QTY | Unit Cost
Unit Cost
Unit Cost
Unit Cost | Cost
Cost
Cost
Cost | | | Steam/Chilled Water Distribution Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M
U/M
U/M | QTY
QTY
QTY
QTY | Unit Cost
Unit Cost
Unit Cost | Cost
Cost
Cost | | | Paving Walks Curbs Gutters Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M
U/M | QTY
QTY
QTY | Unit Cost
Unit Cost | Cost
Cost | | | Storm Drainage Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M
U/M | QTY
QTY | Unit Cost | Cost | | | Site Imp., Demo Subtotal -Total Estimate SDD Co | U/M | QTY | | | | | Subtotal -Total Estimate SDD Co | | | Unit Cost | Cost | | | | ntract Cos | | | 5031 | | | | illiact cos | T I | | Cost | | | Contingency Percent (5%) | | | | Cost | | | Subtotal | | | | Cost | | | SIOH Percentage (5.7% or 6.5% | .) | | | Cost | | | Total SDD Cost Impact on PA | '' | | | ????? | | | Total ODD GGC III page GITTY | | | | | | | | | | | | | | Γ Sustainable Project (| Cerifica | ation | Levels | Silver | Gold | | SPiRiT Bronze 2 | 5 -34 poi | nts | | | | | | | | | | | | SPiRiT Silver 3 | 5-49 poir | nts | | | | | SFIRIT SIIVEI 3 | | | | | | | | 0-74 poir | nts | | | | | | | | | SPiPiT Gold 50-74 points | SPiRiT Gold 50-74 points | 8